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SYMBOLS

a =a subscript, indicating a variable determined in the air, Ha centimeters above
the soil surface. 

A = sensible heat transfer into the air, calories per centimeter2 per day (cal cm"2
day"1).

6 =  B(Tu   Ti)/L u*, grams per centimeter4 (gm cm"4). 
B = (11/0) (f/«) £', grams per centimeter3 per degree kelvin (gm cm~3 "K"1). 
c =E/Dhv, centimeters"1. 
Da =a coefficient characterizing the molecular diffusion of water vapor in free air,

centimeters2 per day (cm2 day"1). 
Dhv = a coefficient characterizing the molecular diffusion of soil-water vapor caused

by humidity gradients, centimeters2 per day (cm2 day"1). 
DTV =a coefficient characterizing the molecular diffusion of soil-water vapor caused

by thermal gradients, centimeters2 per day per degree Kelvin (cm2 day"1
"K"1).

e =*E/K&it, rate of evaporation from the soil, dimensionless. 
E =rate of evaporation from the soil, centimeters per day (cm day"1). 
epot =rate of potential evaporation, dimensionless.
 Spot =rate of potential evaporation, centimeters per day (cm day"1). 
e x = soil-limited rate of evaporation from the soil, dimensionless. 
Ex = soil-limited rate of evaporation from the soil, centimeters per day (cm day"1). 
f(e) =a functional relation defined by equation 27.
Fm =a function which relates E and S u, using meteorological parameters. 
Fa =& function which relates E and S u, using soil parameters. 
g = acceleration of gravity = 980 centimeters per second2 (cm sec"2). 
<r(F0)=a theoretically or empirically derived known function of wind speed, centi­ 

meters per day per millibar (cm day"1 mb"1). 
h = relative humidity, dimensionless.
ha =air relative humidity at height Ha above the soil surface, dimensionless. 
Ha = height of meteorological measurements above the soil surface, centimeters. 
h u = surf ace-soil relative humidity, dimensionless.
H u =roughness parameter, centimeters (usually, for bare soils, 0.01 ^Hu ^ 0.03). 
hi =soil relative humidity at depth L u, dimensionless. 
hi* =soil relative humidity at depth L u*, dimensionless. 
I(y) =the integral relation denned by the right-hand side of equation 18. 
k =von Karman constant = 0.41, dimensionless. 
K =Knq = hydraulic conductivity for liquid flow, centimeters per day (cm day"1).
 Ksat = hydraulic conductivity of water-saturated soil, centimeters per day (cm day"1).
 Kvap =hydraulic conductivity for vapor flow, centimeters per day (cm day"1).
I =L/Si/2, depth to water table, dimensionless.
L = total distance between, the water table and soil surface, centimeters.
Lj =in the multilayer case, the thickness of soil layer, centimeters, j layers above

the water table (that is, j= 1 means one layer above the water table, and so
forth).

L u = thickness of the uppermost soil layer, centimeters. 
L u* = thickness of the uppermost portion of the dry soil surface at which TI was

determined, centimeters. 
L v' = thickness of the dry soil layer in which isothermal vapor transfer is assumed

to predominate, centimeters. 
M = molecular weight of water = 18 grams per mole (gm mol"1).
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n =an integer soil coefficient which usually ranges from 2 for clays to 5 for sands.
p =saturation vapor pressure of water, millibars.
p(T) = a known relation between the saturation water-vapor pressure and temperature

(given in tabular or functional form), millibars.
P = ambient pressure, millibars (taken as P = 1,000 mb in this study). 
q =flux of water, centimeters per day (cm day"1).
Qg =soil heat flux into the ground, calories per centimeter2 per day (cal cm"2 day"1). 
QN = net radiative flux received by the soil surface, calories per centimeter2 per day

(cal cm"2 day"1).
R =gas constant = 8.32X107 ergs per degree Kelvin per mole (erg "K"1 mole"1). 
s =S/Si/t, dimensionless suction. 
S = soil-water suction, defined as the negative of the soil-water pressure head,

centimeters of water. 
Si =in the multilayer case, the soil-water suction at the upper interface of layer

j, centimeters of water.
S u = water suction at the soil surface, centimeters of water. 
Si/2 = a constant soil coefficient representing S at K = % fCsat, centimeters of water. 
T = temperature, degrees Kelvin (°K). 
Ta =air temperature at Ha, degrees Kelvin (°K). 
T u = surf ace soil temperature, degrees Kelvin (°K). 
jTi =soil temperature at depth L u*, degrees Kelvin (°K). 
u = a subscript, indicating a variable determined at the soil surface. 
v = a subscript, indicating a variable which involves water-vapor transfer. 
Fo =wind speed at height Ha, centimeters per day (cm day"1). 
y =a variable, defined by equation 16. 
y =a variable, defined in conjunction with the right-hand side of equation 31 pf

the layered-soil case.
z =Z/Si/t, height above water table, dimensionless. 
Z = vertical height above the water table, centimeters. 
a = tortuosity factor, dimensionless.
|8' =d(loge pv)/dT, grams per centimeter3 per degree Kelvin (gm cm"8 "K"1). 
7 = psychrometric constant = 0.000659 P, millibars per degree Kelvin (mb "K"1). 
e = water /air molecular ratio =0.622 (dimensionless). 
f = a ratio of the average temperature gradient in the air-filled soil pores to the

overall soil temperature gradient, dimensionless. 
1) =soil porosity, dimensionless.
X = latent heat of vaporization of water at Ta, calories per gram (cal gm"1). 
PO =air density at Ta, grams per centimeter3 (gm cm"8). 
PV = pv (T) = density of saturated water vapor, grams per centimeter3 (gm cm"8); p,

is a function of temperature.
Pa, = water density at appropriate T, grams per centimeter3 (gm cm~8): 
<7 = volumetric air content of the soil, dimensionless. 
*(<r) =a function defining the effectiveness of the water-free pore space for diffusion,

dimensionless.
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ESTIMATING STEADY-STATE
EVAPORATION RATES FROM

BARE SOILS UNDER CONDITIONS
OF HIGH WATER TABLE

BY C. D. RIPPLE, JACOB RUBIN, AND T. E. A. VAN HYLCKAMA

ABSTRACT

A procedure that combines meteorological and soil equations of water transfer 
makes it possible to estimate approximately the steady-state evaporation from bare 
soils under conditions of high water table. Field data required include soil-water 
retention curves, water-table depth, and a record of air temperature, air humidity, and 
wind velocity at one elevation. The procedure takes into account the relevant atmos­ 
pheric factors and the soil's capability to conduct water in liquid and vapor forms. 
It neglects the effects of thermal transfer (except in the vapor case) and of salt accumu­ 
lation. The evaporation rate can be estimated for homogeneous as well as layered 
soils. Results obtained with the method demonstrate how the soil-water evaporation 
rates depend on potential evaporation, water table depth, vapor transfer, and certain 
soil parameters.

INTRODUCTION

It is sometimes desirable to estimate the evaporation rates from bare 
land surfaces and to predict approximately the variation of these rates 
with meteorological conditions or with man-imposed changes in the water- 
table level. This estimate might be rather important in certain regions 
during the appraisal of ground-water availability. For such purposes, it 
is often both permissible and useful to use relatively simple estimation 
methods. One possibility is to assume steady state of the hydraulic- 
gradient-driven upward flux of water and to neglect certain effects of soil 
temperature and of solute accumulations.

The basic approaches required for the development of this method 
can be found in the literature. Gardner (1958) suggested a convenient 
equation for describing hydraulic conductivity, the most relevant soil 
parameter, and from it developed methods for evaluating soil-limited 
evaporation in cases of high water table. Arbhabhirama, Duke, and Corey 
(1965) and Stallman (1967) employed Gardner's general approach but

Al
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used different soil parametric equations. They demonstrated the useful­ 
ness of dimensionless curves in solving problems of the type under con­ 
sideration.

The above treatments stressed the cases in which soil properties were 
the determining factor of evaporation. Cases of evaporation in which the 
atmospheric conditions play the decisive role can be treated by means of 
several purely meteorological equations (for example, Slatyer and 
Mcllroy, 1961).

Philip (1957a, b) showed how the effects of the soil factors on bare-soil 
evaporation interacted with the effects of the atmospheric parameters 
on bare-soil evaporation. Owing to his utilization of numerical methods, 
Philip's approach to soil influences was more general but mathematically 
less convenient than Gardner's approach.

All the studies quoted above concerned themselves with homogeneous 
soils and mainly with cases involving liquid transfer. Gardner indicated 
how to include the vapor-transfer effects, but only for selected circum­ 
stances. Philip's approach to vapor effects is more general, but again 
mathematically less convenient.

The purpose of this paper is to integrate and extend the above approaches 
for estimating steady-state evaporation from bare soils under high 
water-table conditions. The past approaches are unified, modified, and 
supplemented when necessary to improve their practicability as a general 
(though approximate) method.

Stress has been placed on use of readily available data, simple parameter- 
determination techniques, dimensionless variables, and simple graphical 
or algebraic treatments. Numerical integrations have been, avoided. 
The older approaches are generalized so as to make them applicable to 
layered as well as homogeneous soils. In addition, analysis of the multi­ 
layer case is modified to allow for the treatment of evaporation affected 
by water-vapor transfer. Examples of the results obtained with the 
suggested method are presented, discussed, and utilized for demonstrating 
the role of some of the relevant factors.

THEORY

The steady-state evaporative fluxes across the boundary between any 
given soil-atmosphere system may be described by two functional rela­ 
tions. The first deals with the fluxes leaving the soil surface and entering 
the atmosphere. It may be represented by the meteorological equation

Su = Fm (E). (1)

The second describes the fluxes between the water table and the soil 
surface and may be expressed by the soil equation

L = Fg (Su,E). (2)
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In the above equations,

L = total distance between the water table and the soil surface, cm, 
Su = water suction at the soil surface, denned as the negative of the

soil-water pressure head, cm of water, 
E =rate of evaporation from the soil, cm day"1 , 
Fg = a function which relates E and Su, using soil parameters, and 
Fm = o. function which relates E and Su, using meteorological

parameters.

Each of the above relations is an algebraic equation containing the same 
variables, E and Su . Therefore, the equations can be solved simultaneously 
to yield values of the actual E and Su. The determination of the actual E 
is the main concern of this paper.

METEOROLOGICAL EQUATION

A relation is sought to express meteorological equation 1. For simplicity 
and ease of handling, however, it is best to treat the components of this 
relation individually.

The basic meteorological equation used is of the type generally known 
as the bulk aerodynamic, or Dalton, equation (Slatyer and Mcllroy, 
1961). Its form is

E = G(VJ[p(TJhu-p(TM, (3) 
where

Cr(F0)-=a theoretically or empirically derived known function of
wind speed, cm day"1 mb"1 , 

Va = wind speed at height Ha, cm day"1 , 
h = relative humidity, dimensionless, 
T = temperature, °K, 
p = saturation vapor pressure of water, mb, 
p(T) =a known relation between the saturation water-vapor

pressure and temperature (given in tabular or functional
form) , mb, 

a =a subscript indicating a variable determined in the air,
Ha cm above the soil surface, and 

u =a subscript indicating a variable determined at the soil
surface.

This equation, owing to its simplicity, has been used extensively for 
estimating the loss of water by free-water surfaces, plants, and bare 
soils. Either its empirical form (Harbeck, 1962) or one of its modified 
forms (Slatyer and Mcllroy, 1961, p. 3-40 to 3-44) can be employed. 

The present study utilized the wind function used by van Bavel (1966) ,

(4)> ^ 'r> npwp / (log.
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where

pa   air density at Ta, gm cm"3,
Pw = water density at Ta gm cm"3,
e = water/air molecular ratio = 0.622, dimensionless,
k = von Karman constant = 0.41, dimensionless,
P = ambient pressure, mb (taken as P = 1,000 mb in this study),
Ha = height of meteorological measurements, above the soil surface,

cm, and 
Hu   roughness parameter, cm (usually, for bare soils,

0.01<#«<0.03).

Equation 3 may be rewritten as follows to obtain the form required 
by equation 1

The surface relative humidity, hu, specified by equation 5 may now be 
substituted into the thermodynamic relation (Edlefson and Anderson, 
1943),

Irri

/itt, (6)uett, 
Mg

where

M = molecular weight of water = 18 gm mole"1, 
g = acceleration of gravity = 980 cm sec~2, and 
R =gas constant = 8.32 X107 erg "K-1 mole-1 .

The above substitution would result in an equation expressing &. in 
terms of atmospheric variables, the soil surface temperature Tu, and E.

To completely attain the form of equation 1, the variables on the right- 
hand side of the equation sought should be, except for E, entirely meteoro­ 
logical. But Tu, the surface soil temperature, is present in the combination 
of equations 5 and 6. To replace T* with meteorological variables and 
parameters, an appropriate expression for Tu may be developed. First, 
note that Tu is related to sensible heat transfer in the air by the following 
equation for turbulent transfer (Slatyer and Mcllroy, 1961, p. 3-53; 
van Bavel, 1966, p. 466) :

T.), (7) 
where

A = sensible heat transfer into the air, cal cm~2 day"1,
X = latent heat of vaporization of water at Ta, cal gm-1 , and
7 =psychrometric constant = 0.000659P, mb "K"1 .
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Second, substitute A into the following heat-balance equation (Slatyer 
and Mcllroy, 1961, p. 3-50; van Bavel, 1966, p. 456):

(8)
where

Qtf=net radiative flux received by the soil surface, cal cm~2 day"1 and 
Qo =soil heat flux into the ground, cal cm~2 day"1 (assumed to equal 

zero for periods of interest in this study).

The combined equations 7 and 8, after rearrangement, yield the following 
for Tu :

(9)

If equation 9 were substituted into a combination of equations 5 and 6, 
the overall meteorological equation, equivalent to equation 1, would be 
obtained.

SOIL EQUATION

The simplest system to be considered is shown in figure 1, case A. A 
homogeneous soil is underlain by a shallow water table, with the reference 
height Z measured positively upward from the piezometric surface. The 
soil surface is at Z = L.

E E E

Z=0

+j

v

?

Layer 1 L,

&u

-L

c_n

Layer u I

- o,'-l 
1 1

., ,_J - 1 0 J

Layer 2

Layer 1

-» 02

"2

.I'

Case A Case B

S=0

Layer u
-----   - 

Layer 1

M
1

L

 «u

 s,

L
/J

s=o

Case C

FIGURE 1. Water-table-soil-atmosphere systems considered. Case A: A homogeneous 
soil in which water is transferred exclusively in liquid form. Case B: A layered soil in 
which water is transferred exclusively in liquid form. Case C: A homogeneous soil 
in which water is transferred in liquid and vapor forms, the former transfer being 
predominant in the lower layer and the later predominant in the upper layer.
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For determining water transfer in liquid form, the soil's hydraulic- 
conductivity relation is assumed to conform to an empirical function, 
originally suggested by Gardner (1958, equation 11). It is presented here 
in a modified form (Gardner, 1964) which demonstrates more clearly the 
physical significance of the coefficients:

K=K(S)=      , (10)

4-Y+i
where

K = hydraulic conductivity for liquid flow, cm day"1 ,
-Ksat = hydraulic conductivity of water-saturated soil, cm day"1 ,
S = soil-water suction, defined as the negative of the soil-water

pressure head, cm of water, 
iSi/2 =a constant coefficient representing S at K = ^KafLt} cm of

water, and 
n = an integer soil coefficient which usually ranges from 2 for clays

to 5 for sands.

Assuming that Darcy's equation holds for flow in both saturated and 
unsaturated soils, the flux, q, which under steady-state conditions must 
equal the evaporation rate E, may be described by

On rearranging and integrating, equation 1 1 becomes
z' s ' dSr r d

> = i dZ = \ , (12)
J J

where

Equation 12 with equation 10 substituted for K(S) becomes

E i

Si/2/

The above integral can be expressed in closed form (Gardner, 1958). 
Equation 13 expresses explicitly Z1 as a function of S and E. Also, it 
defines implicitly the relation between E and S' for any given Z'. Both
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facts have been utilized in the past (Philip, 1957a; Gardner, 1958). 
Utilization of the implicit relation, however, is unwieldy in practice, 
except forn = 1 or 2, in which case the relation can easily be inverted and 
made explicit. To convert equation 13 to a more tractable form, the 
following transformations may be carried out. First, define the dimension- 
less variable,

e=E/Ks&i , (14)

and substitute it into equation 13,

(0+H) -K)
r dS

S/S1/2 + 1. (15)

Second, define a variable y by

s
l+e

l/n

(16)

and transform the integral of equation 15 with its aid to obtain, after 
rearrangement, the basic equation of this study,

(H-l)
>l/2

(17)

where
Sf l/n

In particular, at the soil surface, when Z' = L

Lj rVu d -^  = /  
O1 /2 Jn Ui (18)

where

The integral on the right-hand side of equations 17 and 18 is known in 
closed form for any positive n (Gradshteyn and Ryzhik, 1965, equation 
2.142). The form of equations 17 or 18 makes it possible to determine 
the relation between e and the suction (either S' or Su ) for any n by
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means of simple graphs. This technique as well as the results obtained 
with its aid will be described presently.

For certain purposes, the use of equations 17 and 18 can be further 
simplified by adopting the dimensionless variables

-, (19)
1/2

«---, (20)
01/2

and

1-^-, (2D
01/2

in addition to the dimensionless e = E/Ka&t used previously. With the 
exception of s, these dimensionless variables are similar to those employed 
by Staley (cited by Arbhabhirama and others, 1965) , whose hydraulic- 
conductivity equation is also somewhat similar to equation 10. Inspection 
of numerous curves indicates that 6*1/2 of the dimensionless s matches the 
observed relations between K and S better than does the air entry 
pressure used in this connection by Staley. The above dimensionless 
variables reduce the basic equation 18 to

--
where

"

An analogous reduction can be carried out for equation 17.
The following reasoning leads to another useful relation which is 

implied by equation 18. It is clear from physical considerations that an 
increase in the evaporative capacity of the atmosphere will produce an 
increased suction at the soil surface. This higher suction, in turn, must 
magnify the upward water flux through the soil. If equation 18 correctly 
describes reality, such a flux cannot increase without bound, because as 
Su (and hence yu } approaches infinity, the integral on the right-hand side 
of equation 18 approaches a finite limit, T/(n sin r/n) (Gradshteyn and 
Ryzhik, 1965, equation 3.241-2 with /* = !)  It follows that a limiting 
soil-water flux and hence a soil-limited evaporation, e*, exists. For any
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particular soil system the latter is given by

In L

(6=0+1)

or, in completely dimensionless form,

/Si/2
wsin- 

n

(23)

. 7Twsin   
w

(24)

The last two equations can be simplified considerably if  *,<£! (that is, 
if .E<<CKsat). In such a case, 6^+1=1, and equations 23 and 24 lead to

(25)
. ITwsin   

n

and

a f**s   
«     J.

. ITwsin   
n

(26)

Equation 25 is similar to the formulas for Eum given without derivation 
by Gardner (1958) for w=f, 2, 3, 4 and yields identical numerical 
coefficients.

APPLICATION

DATA REQUIRED

The equations presented above may be used to compute the estimated 
evaporation from bare soils under high water-table conditions. The data 
generally needed for such computations are as follows.

The meteorological data (those needed in connection with the utilization 
of equations 4, 5, and 9) are obtained by standard techniques or from 
references. These data include wind velocity, F0, air temperature, Ta, the 
air relative humidity, ha, and net radiation, QN. The magnitude of 
p(Ta)ha, the water-vapor pressure in the air, is determined from Ta and 
ha with the aid of standard tables or formuLs. Daily QN values may be 
determined either by direct measurement or by the method outlined in
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Slatyer and Mcllroy (1961, appendix 2). For a given site, the latter 
technique can produce calculated QN values with the aid of standard 
information in the Smithsonian meteorological tables (List, 1951). A 
zero value has been assumed for Qg in the computations of this paper. 
This is a reasonable assumption for daily means of Qg, especially when 
these are used in conjunction with QN and \pwE. (See equation 9.)

In addition to the above strictly meteorological data, the soil-surface 
temperature, Tu, is useful because it appears in equations 5 and 6. Data 
on this temperature are usually unavailable, and thus the development 
of equation 9 as an indirect method for Tu determination is necessary. 
If, however, soil-surface temperature data are available, it is possible to 
avoid the use of equation 9 and of the usually approximate QN data needed 
in connection with this equation.

The soil equation requires knowledge of the hydraulic conductivity for 
a reasonable range of soil-water suctions. Such data will allow evaluation 
of the necessary coefficients -K"sat , n, and $i/2 for a particular soil. Ks&t can 
be measured directly and readily; however, the other two coefficients are 
more difficult to obtain. They may be computed from more routinely 
available data, by using the technique of Marshall (1958), as modified by 
Millington and Quirk (1961) and by Jackson, Reginato, and van Bavel 
(1965). This technique produces, for selected magnitudes of S, a series 
of scaled hydraulic-conductivity values K'(S)=%K(S'), where £ is the 
scale factor and where K'(S) at S = 0 is designated by K's&t . Note that 
the scale factor need not be determined to find n and $i/2 . If equation 10 
is obeyed, a plot of log (K^t/K(S) -!)[= log (X'8at/X'(>S)-l)] 
versus log S is linear. The slope of such a plot is equal to n, and the plot's 
intercept with the abscissa determines $1/2.

The manner of the computation of the scaled hydraulic-conductivity 
values is adequately described in the above references. The basic in­ 
formation required by these computations is the characteristic relation 
between the soil-water suction and the volumetric moisture content 
(that is, the water-retention curve or the pore-size distribution function). 
Such data are regularly determined in soil laboratories. Some of these may 
also be obtained in the field by measuring the moisture content of the 
soil overlying a sufficiently shallow water table as a function of depth, 
after a prolonged period of negligible soil-water fluxes.

HOMOGENEOUS SOIL

For a homogeneous soil with insignificant vapor transfer (fig. 1, case 
A), evaporation, E, can be computed from the meteorological and soil 
equations in several ways. In most cases it is convenient to compute e 
first. When appropriate, e may be converted to E by using equation 14. 
In the early stages of the computation, the soil-imposed upper bounds
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of e(O or the bounds imposed by atmospheric factors (epot) may be 
needed. They can be easily computed as will be shown presently.

Equations 4, 5, 6, and 9 are combined and yield an overall meteorological 
equation, which expresses Su as a function of e and which corresponds to 
equation 1. This equation is substituted into the soil equation 18 to yeild 
a nonlinear algebraic equation in e. The root of this equation may be 
found by routine numerical methods. In this study, the method of "false 
position" (Hildebrand, 1956, p. 446-447) was programmed for a digital 
computer, tried, and found satisfactory.

Alternately, e can be obtained by plotting the curves corresponding to 
the above meteorological and soil equations ; the magnitude of the actual 
e is given by the intercept of the two curves. The meteorological equation 
is plotted for selected values of e<epot in a straightforward manner. The 
soil curve is determined for selected values of e <e w by using the following 
graphical procedure. Any given e value may be used with an appropriate 
(that is, proper ri) plot of

(27)

to determine the corresponding value of/ (fig. 2). When/is multiplied by 
l   L/Si/z, one obtains the magnitude of the left-hand side of equation 18. 
This magnitude is equal to the value of the integral, I = I(yu ), on the 
right-hand side of the same equation. Then by using a plot of /(?/«), 
given in figure 3, yu is found. Finally, the required Su is computed from 
yu by using the relevant definition, given below equation 18.

For less accurate but quicker estimates of the soil curve, dimensionless 
plots of the type illustrated in figure 4 may be used, in which the needed 
values of e and s are obtained for any given z = l. The limited range covered 
by the plot and the necessity for a field filled with many curves are the 
obvious detriments of this approach. It should be noted that the curves 
in question also indicate the suction within the soil profile as a function 
of depth for any given evaporation rate.

Exact and approximate limiting evaporation rates, imposed by soil 
eco or EH, can be obtained from equations 23 through 26. The approximate 
values are given directly by the appropriate equations. The exact values 
can be computed easily with the aid of figure 2, or if less accurate values 
are needed, they can be read off directly from an appropriate dimension- 
less plot in figure 5.

The limiting evaporation rates imposed by meteorological conditions, 
epot , can be computed (graphically or numerically) for any weather data 
by solving simultaneously equations 5 and 9, with hu = l.Q (that is,
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Examples of results obtained with the aid of the above graphical 
methods are shown in figures 6, 7, and 8. The examples refer to two 
selected soils, Chino clay with n = 2, Si/2 = 24, and Xeat =1.95 (Gardner 
and Fireman, 1958) and a coarse-textured alluvial soil taken from the 
50-60-cm zone of U.S. Geological Survey evaporation tanks near Buckeye,

0.50

0.40 -

0.30 -

0.20

0.10

eXIO 3

FIGURE 2. Plots of f=f(e) = (e+l) (    1 forn=2, 3, 4, 5.
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Ariz., with n=5, $1/2=44.7, and KSAi = 417. These evaporation tanks are 
described by van Hylckama (1966).

Application of the graphical intersection method is illustrated in figure 
6. The figure shows meteorological curves for several arbitrarily selected 
atmospheric conditions and soil curves corresponding to several water- 
table depths. Note that the soil curves approach a limiting E with in­ 
creasing Su. and thus are in agreement with the previously presented 
theoretical proof. The rate of approach to the actual En (or ew ) shown 
by the soil curves mainly depends on the value of n characterizing the 
particular soil. A relatively rapid approach is exhibited by the Buckeye 
soil (n=5), while the approach of the Chino clay (n = 2) is much more 
gradual. It should be noted that most of the field soils commonly found 
show n values which lie between 2 and 5. Hence, such soils will usually 
yield E(Su) plots similar to or intermediate between those shown in 
figure 6. The meteorological curves also seem to approach a limiting E, 
but with decreasing S. The values of E, fixed by the intersection points 
between meteorological and soil curves of the figures in question, represent 
the actual evaporation rates under the particular meteorological, soil, and 
water-table conditions.

The dependence of the actual E on weather and water-table depth is 
demonstrated more clearly in figures 7 and 8. Figure 7 is concerned with 
the influence of the depth to water table under given meteorological

FIGURE 3. Plots of /=/(y«) - /  77 for n=2, 3, 4, 5.
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100

20 -

e=lX!Q-5

40 60 80 100

FIGURE 4. Dependence of dimensionless soil-water suction, s, on dimensionless soil 
height, z. The numbers labeling the curves indicate the magnitude of dimensionless 
evaporation rates, e. Upper, Soil parameter n .= 2. Lower, Soil parameter n = 5.
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conditions. This figure demonstrates that for a particular soil and meteoro­ 
logical condition, the evaporation rate remains essentially constant and 
fixed by weather, if the water-table depth does not exceed a certain value. 
With the water table at greater depths, the evaporative flux decreases 
markedly because the soil becomes the limiting factor. In other words,

1X10

ixio- 2 -

ixio- 3 -

ixio- 4 -

ixio- 5

ixio- 6

KKU-RK .">. Plots relating dimensionless evaporation, e, to dimensionless depth to 
water table, /, for n - 2, 3, 4, 5.
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the flux decreases, because in figure 6 the pertinent meteorological curve 
intercepts the flat portion of the relevant soil curve. For any given set of 
meteorological and soil conditions, the transition between the horizontal 
and descending portions of an appropriate curve in figure 7 is so sharp

7.0 6.0 5.0 4.0 3.0 
LOG 10 (SURFACE-SOIL SUCTION (SJ, IN CENTIMETERS)
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LOG, n (SURFACE-SOIL SUCTION (SJ, IN CENTIMETERS)

FIGURE 6. Intercept method for determining evaporation rates, shown for Chino 
clay and Buckeye soil. The solid lines represent the meteorological curves for wind 
speed of 6 kilometers per hour, air temperature of 25°C, and for the indicated QN 
values. The top and bottom curves, corresponding to a given QN, represent air rela­ 
tive humidities, ha, equal to 0.02 and 0.75, respectively. The dashed lines represent 
the soil curves for the indicated water-table depths, L.
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that it can be taken as discontinuous, and its curvature can thus be 
neglected; this fact is in agreement with the observations by Philip 
(1957b). Therefore, each curve of figure 7 consists essentially of a hori­ 
zontal part fixed by the weather and a descending part fixed by equation 
23 or 24 (that is, by fig. 5).

This characteristic form of the curve leads to the simplicity of the 
following procedure for determining the actual E. The appropriate soil- 
limited evaporation, EM , may be determined with equation 23 or 24 and 
plotted against depth to the water table. The appropriate meteorologically 
controlled potential evaporation, Epot, may then be entered as a straight 
horizontal line. The actual evaporation for any given water-table depth 
may be taken as the lowermost portions of the two intersecting curves.

Note that if E<^Ks&i , as in figure 7, Buckeye soil, the exact and approxi­ 
mate EM curves essentially coincide. Hence, equations 25 or 26 may be 
used for estimating E under such circumstances. On the other hand, in

0.8 r

0-6 ' BUCKEYE SOIL

0.5

0.4

£0.2

0.1

0 L
0 100 200 300 400 

DEPTH TO WATER TABLE. IN CENTIMETERS

FIGURE 7. Relation between evaporation rates and water-table depths, shown 
for Chino clay and Buckeye soil, calculated by the intercept method (solid line). The 
indicated meteorological conditions are identical with those of figure 6, The descend­ 
ing solid line also represents the exact soil-limited rates of evaporation obtained 
from equation 23. The dashed line represents the approximate soil-limited rates of 
evaporation and is obtained from equation 25. The exact and approximate curves 
coincide in Buckeye soil. Figure 7 continued on next page.
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0.8 r         ,         ,         ,     
T

CHINO CLAY

100 200 
DEPTH TO WATER TABLE, IN CENTIMETERS

FIGURE 7. Continued

figure 7, Chino soil, such a coincidence does not occur. As a result, the 
approximate Ev curve overestimates the actual E in the descending 
portion of the E curve.

Figure 8 illustrates for several water-table depths in Chino soil how 
efficiently the atmosphere can remove soil water under various meteoro­ 
logical conditions. The index of the meteorological conditions is the 
potential (that is, Su = 0) evaporation, 'Epot . The efficiency of removal is 
measured by the ratio E/Epot . For a given water-table depth, the < figure 
demonstrates that the maximum efficiency of water removal ( = 1.0)
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0.2 0.4 0.6 
POTENTIAL EVAPORATION RATE, IN CENTIMETERS PER DAY

0.8

FIGUKE 8. Dependence of relative evaporation rates, E/Epo t,, upon the potential 
evaporation rates, Evoi, for Chino clay. Numbers labeling the curves indicate the 
depths to water table.

occurs at small values of Epot . For any given water-table depth, as -Epot 
increases, the efficiency remains at a maximum until a certain limiting 
.Epot is reached; thereupon, the efficiency declines rapidly. This transition 
point is fixed by the water-table depth and occurs when the evaporation 
rate becomes limited by the soil's inability to conduct water rapidly 
enough.

LAYERED SOIL

Steady-state evaporation in a layered system unaffected by vapor 
transfer may be described by the functional relations appropriate to each 
layer in a manner analogous to the homogeneous case. For a soil with i 
layers above the water table (fig. 1, case B), these relations may be 
symbolized as follows:

Soil layer 1 (lowermost) Li = Fgi (Si, E),

Soil layer 2 L* = Fn (S\, 82, E),

Soil layer 3 L3 = Fgs (Sz, 83, E),

*** ***

Soil layer i (uppermost) Lu = Fgi (Si-i, Su, E} }

The atmosphere E = Fm (Su).

(28-1) 

(28-2)

(28-3)

***

(28-0

(29)

In any one of the equations 28-j above (in which the value of j is 
1, 2, 3, or /), Sj-i and S, are, respectively, the suctions at the lower and 
upper interface of layer j. Note that $0 is known ($0 = 0); therefore, it
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does not appear in equation 28-1. Also, in conformance with the earlier 
symbolism, Si is designated as Su . (See equation 28-z.) Presently, the 
subscript j will also be used for subscripting the coefficients n, Si/z, and 
KB *t of the layer j.

The above set of equations may be solved simultaneously since it 
contains as many equations as unknowns. Such a solution may be achieved 
using either a numerical or graphical (intercept) method. The latter 
method will be described presently. Note that, as in the homogeneous 
case, the present approach is possible owing to the fact that two adjacent 
layers exhibit identical suctions at their common interface.

It will be recalled that the intercept method discussed previously 
involves finding the intersection between plots representing the meteoro­ 
logical and soil equations. In applying the intercept method to the layered 
case, one must deal with sets of parameters which differ from layer to 
layer. Hence, E and S should be plotted rather than their dimensionless 
counterparts, although e may be employed in certain computations 
involving single layers.

The meteorological curve needed is plotted with the aid of equations 
4, 5, 6 and 9, as it was in the homogeneous soil case. The graph of the soil 
equation involves Su (in addition to E) , that is the surface suction of the 
uppermost layer. To plot such a graph for a layered soil system, a pro­ 
cedure for obtaining Su from any given E must be used. This procedure 
involves the determination, for a given E value, of the suction, S,, at the 
upper surface of each successive soil layer, starting with j=l and ending 
with the appropriate value of Su for j = i.

The equation for computing such a suction at the lowermost layer 1 
(fig. 1, case B) is

/ni

where 

and

Note that equation 30 is identical with equation 18 because of the physical 
similarity of the respective situations. The graphical procedure for ob­ 
taining Si (utilizing figs. 2 and 3) described for equation 18 is applicable 
here.

In the second step, the equation used for the relations in layer 2 is

/n2 dy
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where

= 2/2
V""

( £1/2)2

- = _J?L_ 
2/1 (£1/2)

and

The derivation of the above equation is identical in principle with that 
of equation 17; however, the lower boundary condition here is £ = £1 and 
not zero, as it was in equation 17.

Equation 31, for ease in handling, is rearranged as

'"" *    r" * f" * (32)

With the aid of equation 32 one can find $2 for the given Si and 2£ values. 
To accomplish this, first compute y\ and 62, using the relevant definitions 
given in connection with equation 31. The integral on the left-hand side 
of equation 32, I(y\), is then evaluated employing the appropriate curve 
of figure 3. Next, a technique identical with that of the homogeneous case 
(and involving fig. 2) is used to determine the magnitude of the first 
term of equation 32, f(ez}Lz/(Si/z)z- Addition of the latter term to the 
previously computed I(y\) yields the value of I(yz), from which £2 is 
computed using figure 3.

Equations such as equation 32, with subscript 2 replaced by 
j = 3, 4, ****', may be written for each additional soil layer. Thus the cal­ 
culation procedure may be carried stepwise up the soil profile. The 
equation for the uppermost layer leading to the Su values sought is/n *'

where the definitions of i/i-i and yu are similar to those of analogous terms 
in equation 31.

Often, the only information sought is the dependence of the soil- 
limited evaporation, E^, upon the water-table depth. Such information 
may be obtained for multilayered systems without determining the 
individual soil curve and without using graphical or numerical means. 
Most of the required procedure consists of computing, for various E 
values of interest, the suctions at the lower surfaces of successive soil 
layers, starting with the uppermost layer, i, and finishing with the layer
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just above the one in which the water table can be found. These com­ 
putations are followed by calculation of the water-table position in the 
lowest soil layer, 1.

The equation for the uppermost layer required by such a procedure is 
derived from equation 33, by noting that e^ is associated with an infinite 
Su and hence with an infinite yu . This in turn implies that the integral on 
the right of equation 33 is equal to ir/[ni sin (ir/n;)]- (See the derivation 
of equation 23.) By using this fact, the rearranged equation for the 
uppermost layer is

1T / 6 N 1/ " fj / ?«-! fly

        ~ (e«+!) (^i) T^T = I T^TTT   (34)

iu sin (   I 
\nj

The value of the left-hand side of equation 34 can be computed for the 
known parameters involved. From this value, y^-i is determined with the 
aid of figure 3. The definition of iju-i provides the means of calculating 
the corresponding $i_i.

The underlying layers, j = i l, i 2, ***, 2, are described by equations 
identical in form with equation 32, but index 2 is replaced by indices 
appropriate to the particular layer. These equations may be successively 
solved for $/_i, progressing downwards, in the manner closely resembling 
the one described in the preceding paragraph. In each step, the suction 
previously determined at the lower interface provides the suction value 
for the upper interface of the analyzed layer. This procedure may be 
carried out stepwise, down the soil profile, for any number of discrete soil 
layers, until the lowermost layer is reached. At this point, equation 30 is 
used with y\ known from the solution of the equation appropriate to the 
layer just above. This equation is applicable because the suction at the 
lower surface of layer 1 (the water-table surface) is equal to zero for all 
cases. Equation 30 may be used for determining the value of Z/i that 
corresponds to the value of E employed. The final result of such a com­ 
putation for a given value of E is the relevant depth to the water table 
expressed as the sum total of soil-layer thicknesses. Note that as com­ 
putations for various E values progress, the water-table position may be 
found to shift from one soil layer to an adjacent one. Such cases would 
necessitate an appropriate adjustment in the computation procedure 
outlined above.

Figure 9 demonstrates the application of either of the above two 
computation methods to Buckeye soil with (1) no crust, (2) the same 
soil overlain by a slightly salt-cemented upper crust (n = 4, $i/2 = 28.1, 
Xsat=47) of either 3- or 10-cm thickness, and (3) the same soil overlain 
by the 10-cm crust of the previous layer plus an uppermost 10-cm layer 
of a hypothetical soil (n = 3, $i/2 = 20, jRTsat = 20). The figure shows clearly
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DEPTH TO WATER TABLE, IN CENTIMETERS
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FIGURE 9. Influence of layering on the relation between evaporation rate and depth 
to water table. Limiting curves of soil-water evaporation are shown for the homo­ 
geneous case (£2 = 0), a two-layered soil, with the upper layer thickness, Li, of 
either 3 or 10 cm, and a three-layered soil with the thickness of intermediate and 
uppermost layers equal to Li. = 10 cm and Lz = 10 cm, respectively.

that a relatively thin less permeable layer may markedly decrease 
evaporation rates.

EFFECTS OF VAPOR TRANSFER

If a homogeneous soil in contact with a water table is sufficiently dry 
near the surface, water transfer in the dessicated, upper region involves 
primarily vapor rather than liquid flow. Vapor flux in this layer may 
depend significantly on soil-temperature gradients. The probable existence 
of such a transfer can be detected by noting that, in general, appreciable 
vapor-transfer influences in soils tend to occur when ft < 0.8 (Philip and 
de Vries, 1957; Rose, 1963b; Jackson, 1964). To utilize this fact, derive 
hu, by using the previously described procedures for cases unaffected by 
vapor transfer (for example, after computing E, employ equation 5 to 
evaluate ft u). If the derived hu value is smaller than 0.8, E might be 
significantly affected by vapor transfer.

When the dessicated, upper layer in question is present, a more or less 
exact evaluation of E involves numerical integrations and is based on
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heat-transfer as well as water-transfer equations. The approach outlined 
below avoids this relatively complex procedure, but it is clearly approxi­ 
mate. This approach utilizes a suggestion originally made by Gardner 
(1958) and a theory of vapor transfer in soils developed by Philip and 
de Vries (1957). (See also de Vries, 1958.)

Gardner suggested that the homogeneous soil-water system in question 
may be represented approximately by a two-layered column (fig. 1, 
case C) in which water is being transported exclusively in vapor form 
within the upper layer u, while in the lower layer 1 only liquid flow takes 
place. The theory of Philip and de Vries (1957) applied to the dry, upper 
soil layer of such a system may be formulated in terms of humidity and 
temperature gradients. Such a formulation results in the following 
equation of vapor flow:

(35)

where

Dhv = a coefficient characterizing the molecular diffusion of soil-water 
vapor caused by humidity gradients, cm2 day"1 , and

DT* = a coefficient characterizing the molecular diffusion of soil-water 
vapor caused by thermal gradients, cm2 day"1 °K~1 .

It can be shown (Penman, 1940; Philip and de Vries, 1957) that the 
coefficient Dhv is described by

(36) 
where

Da =a coefficient characterizing the molecular diffusion of water 
vapor in free air, cm2 day-1 = 50.91 T**/P, (de Vries, 1958),

P = ambient pressure, mb,
a = volumetric air content of the soil, dimensionless,
$(<r)=a dimensionless function defining the effectiveness of the 

water-free pore space for diffusion, =a<r,
a = tortuosity factor, dimensionless=0.66, and
P* =p»(T) = density of saturated water vapor, gm cm"3 ; pv is a 

function of temperature.

According to the Philip and de Vries theory, the coefficient DTv is 
given by

DTv = Dar,{P/iP-hp(T)-]} (dPl,/dT)i;h/pw, (37)
where

17 = soil porosity, dimensionless, and
f = a ratio of the average temperature gradient in the air-filled soil
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pores to the overall soil temperature gradient ; this ratio depends 
upon soil porosity, water content, temperature, and quartz 
content, and it usually varies between 1.3 and 2.3, except in 
extremely dry, compact soils in which it may reach the value of 
3.2, especially if the soil contains much quartz. (See Philip and 
de Vries, 1957; Rose, 1968.)

Note that

DTv =BhDhv, (38) 

where

B= (,/a) (f/a)[d(log. p.)/dr]= (,/a) (f/a)/3', gm cm-' 0K~l , and

j8' = d(log. pO/dT^O. 1516- 3.22 X10-T; the latter empirical equa­ 
tion has been fitted for 290°K<T<360°K by using data 
from List (1951).

It follows from the expressions for Dh « and DTv given above that 
equation 35 can be written

E dh dT-TT^y+^T"   
Dhv dz dz

Utilization of equation 39 is facilitated by the following approxi­ 
mations, which are made possible by the low water content of the upper 
soil layer in question. First, in dry soils, the volumetric air content, a, is 
approximately constant and equal either to porosity, rj, less the water 
content of air-dry soil, or to T? alone, if the water content is negligible. 
Hence the ratio rj/V of B is approximately constant and often equal to 
unity. It may be noted that of the other factors determining B, only f 
depends on variables other than temperature. In this study, the ratio f , 
which in all soils is generally of the same order of magnitude, will be 
taken as a constant, and all the computations needed for determining E 
will be carried out twice: once for the probable minimum value of f 
(f =1.3) and another time for the corresponding maximum value (f =2.3) . 
It can be shown that such calculations lead to the estimation of the 
probable upper and lower bounds of the E value sought. The above 
considerations indicate that in this study it will be possible to regard B 
as . determined by temperature alone. Second, in dry soils, the ratio 
P/[_P hp(T}~] is approximately equal to unity. Hence, the coefficient 
D^ of equation 39 can be regarded as a function of temperature alone.

In addition to the above approximations and to soil and meteorological 
data, which are needed in the previously discussed cases, the approach 
under consideration requires two new assumptions, as well as information 
about soil temperature, Ti, at one small depth, Lu*. This depth is defined 
here as one which may exhibit a significant gradient of the mean daily
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temperature. In the computations of this study, the Lu* value was taken 
as 2 cm.

The first new assumption required is that the temperature gradient in 
the dessicated, upper layer (of depth Lu ) does not vary with layer thick­ 
ness and is approximately equal to (Tu  Ti)/Lu*.

The second new premise is based on the fact that Dhv and B, though 
temperature dependent, do not vary greatly with T. Owing to this, the 
following can be assumed for temperature ranges commonly met near the 
soil surface: Dk, and B are independent of temperature, if they are eval­ 
uated at the mean temperature of the upper soil layer defined as \ ( TU +T\} .

The above two premises tend to imply that the depth of the upper 
layer in question, Lu , is not very different from Lu*. If the procedure to 
be derived presently yields results which are strongly at variance with this 
implied assumption, a satisfactory assessment of E may require certain 
special measures. These will be described in due course.

With the aid of the above approximations and premises, equation 39 can 
be easily integrated. First, this equation is rewritten in a slightly different 
form,

where
b=-B(Tu -Ti)/Lu*

and
c = E/Dhv .

Second, h of equation 40 is replaced by a new variable, <p, defined by 
tf> = h  (c/&). The resulting equation in <p is readily solved by separation 
of variables, using boundary conditions, which state that the variable h 
assumes the values of hi and hu at Z= (L LU ) and Z=L, respectively. 
This solution yields, after rearrangement, the working equation of the 
procedure under consideration,

2.3 hu -(c/b)
Lu =   - logio T   T-TT   (41 ) 

b hi  (c/b)

Equation 41 makes it possible to compute Lu for a given E, if the 
relevant soil properties are known and if the given value of E is plausible 
under the assumptions made. Note that because of the latter limitation, 
when b is positive (that is, when Tu <Ti), there will exist certain arbi­ 
trarily cho'sen E values for which equation 41 cannot yield a meaningful 
answer.

The value of hi in equation 41 may be taken as corresponding to the 
soil-moisture suction at which the vapor-transfer influences become
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sufficiently important. According to theoretical considerations of Philip 
and de Vries (1957) and measurements by Rose (1963b), liquid flow 
commences at ft=0.6. Jackson's (1964) experiments suggest for desorp- 
tion that this value may lie between 0.5 and 0.8. The commencement of 
appreciable vapor-transfer influences probably occurs at somewhat 
higher values of h than those associated with the commencement of 
liquid flow. Hence, perhaps hi could be taken as at least equal to 0.8. 
For a given soil, the soundness of this choice can be checked and possibly 
improved by comparing the value of K = K\ i(l at ft = 0.8 (computed with 
the aid of equations 6 and 10) and the value of the corresponding coeffi­ 
cient of isothermal vapor transfer (Rose, 1963a), KVCLP = (MghDhv ) / (RT) . 
If Kva.p^Kuq, it is very probable that the value of hi chosen was suitable.

Whichever reasonable value of hi is used, the interface suction Si, which 
corresponds to hi, is relatively high and usually exceeds 10,000 cm. For 
suctions of this magnitude the rate of water flow in the moist soil below 
the interface in question is essentially soil limited. Hence, the rate of 
water transfer in the lower, moist soil layer can be evaluated with the 
aid of equation 23. If the thickness of the moist layer is taken as LI   L Lu, 
then for steady-state conditions and any given L, equation 23 (with 
its L replaced by L LU } in effect expresses E as an increasing function 
of the dry-layer depth, Lu .

Another relation, giving E as a decreasing function of Lu, is expressed 
by the just-derived equation 41. The two equations linking E and Lu 
(equations 23 and 41) can be solved simultaneously, either graphically 
or numerically, to yield the actual E and Lu .

If the value of Lu thus obtained is of a different order of magnitude than 
Lu*, the actual E which corresponds to Lu should be reassessed. If LU<&LU*, 
it might be desirable to acquire new TI data for an appropriately small 
Lu* and to repeat the original procedure, using the new T\. On the other 
hand, if LU»LU*, it is advisable to consider the upper layer, u, as con­ 
sisting of two sublayers. In the upper sublayer, nonisothermal vapor 
transfer can be taken as the predominant manner of water transfer; 
equation 41 describes the relevant relations for such a region. If the depth 
of this sublayer is assumed to be Lu* and if E is given, humidity, hi*, at 
the bottom of the sublayer in question can be computed, since it follows 
from equation 41 that

V=(c/6)+[>u-(c/&)]/exp (-6L.*). (42)

In the lower part of layer u, isothermal vapor transfer can be assumed to 
be the dominant mode of water flow. Such a flow is described by equation 
35, with dT/dz = 0. Integration of this equation, leads to the relation

Lu'=(hi-hi*)/(E/Dhv) (43) 

in which L,/ is the depth of the lower sublayer.
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For a given E, the reassessment procedure just outlined can produce a 
corresponding value of L U (=L'U +L*U ). Thus, a relation between E and 
Lu can be obtained for a set of arbitrarily selected E values. As in the first 
vapor-case procedure described above, such a relation can be used in 
conjunction with equation 23 to determine, either graphically or numeri­ 
cally, the desired values of the actual E and Lu.

The above procedures for including vapor transfer in the evaporation 
computations were tried out with the data of the Buckeye soil on hand and 
with several estimated T\ values. The results obtained showed that under 
the conditions tested ( Tu > T\) , the E value was somewhat increased by 
the vapor-transfer influences. This increase, however, did not exceed 
0.01 cm per day (less than 5 percent of E) and hence could be neglected 
for most practical purposes. (Compare with the results of Hanks and 
Gardner, 1965.) The reason for so slight an increase probably is twofold. 
Firstly, the values of Dhv and DTv are! rather small. Secondly, when 
Tu > TI, thermal transfer is counteracting the influence of the humidity 
gradients. If, however, conditions are such that significant vapor-transfer 
effects are suspected, the methods given in this section can be used to 
estimate such influences.

DISCUSSION, EXPERIMENTAL TEST, AND CONCLUSIONS
Of the relations which can be computed with the aid of the approach 

presented in the preceding pages, the one which might be most useful in 
hydrologic practice is described by the plots of E versus L, as those in 
figures 7 and 9. A summary of the procedure based on using these plots is 
given in the flow chart at the end of this report. The results obtained in 
this study confirm Philip's (1957b) contention that for all practical 
purposes, plots of this kind can be prepared by assuming that for any 
given L, the actual E(L] is the smaller of Epot and E^L). In such cases, 
the latter two quantities may be calculated, respectively, with the aid of 
the appropriate meteorological and soil equations. It follows that the 
actual E is either atmosphere limited or soil limited. This implies that the 
region on the E(L) plots in which both atmospheric and soil factors are 
influential is so small that it can be neglected. For a Yolo light clay, 
Philip noted that the impreciseness due to such a neglect as compared 
with the exact solution was smaller than could be exhibited on a graph of 
the scale he used. The experience of this study, in which two very different 
soils were used, was similar.

The reason for the narrowness of this region of imprecision is suggested 
by the shape of the curves shown in figure 6. An inspection of these curves 
reveals that the Su axis may be divided into the following three regions: 
(1) a low suction region (roughly SU <6X103 ) in which the soil curves 
may show relatively steep slopes but in which the meteorological curves 
are nearly horizontal and are fixed by E=Evot, (2) an intermediate suction
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region (approximately, 6X103 <>SM <6X104) in which soil and meteoro­ 
logical curves are nearly horizontal and approach their respective, 
limiting E values, and (3) a high suction region (SM >6X104) in which 
the meteorological curves exhibit appreciable slopes, whereas the soil 
curves are practically horizontal and are fixed by E=EM . From the above 
it is clear that an intersection between meteorological and soil curves 
which occurs in the low-suction range results in E=Epot- On the other 
hand,, when such an intersection occurs on the high-suction range, one 
obtains E=En . The intersections which occur in the intermediate range 
involve plots with nearly horizontal slopes of opposite sign. Hence, for any 
given set of weather and soil parameters only a limited range of water- 
table depths will produce intersection values confined to the intermediate 
Su range. In this range the values of E may vary somewhat; however, the 
almost horizontal character of the curves specifies that the actual value 
of E lies between the very nearly equal values of .Epot and E*. Therefore, 
for all practical purposes, E Epot E^ for the intermediate range. It 
follows from the above considerations that in all three suction ranges, 
the actual E must be almost equal either to E* or to .Epot or to both of 
these quantities.

The conclusion just stated very probably is not restricted to the soil and 
weather conditions treated in the examples of this study, and it can be 
expected to be applicable rather generally. The reasons for this are as 
follows. Equation 3 demonstrates that the meteorologically determined 
E is a linear function of hu ; however, it follows from equation 6 that 
hu = exp[(-MgSu)/(RTu)]= exp [M2 X10-7 >Stt] where M2 <8 for the 
commonly found surface-soil temperatures, Tu . Hence, hu deviates 
appreciably from 1.0 (that is, from full saturation) only if the Su value is 
very high. This accounts for the fact that the meteorological curve 
deviates from the horizontal only in the high Su range. On the other hand, 
it follows from equation 22 and figure 3 that for the usual soil parameters 
and evaporation rates, the soil curves almost reach their limiting level 
when Su is still relatively low. This accounts for the soil-curve contribution 
to the peculiarities of the E(L) relation under consideration.

An inspection of figure 6 indicates that in the intermediate suction 
range, the E(SU ) curves drawn for soils with low-valued n parameters 
(for example, n = 2) show the largest slopes, whereas the soils with large 
n values (for example, n = 5) exhibit the smallest slopes. Also, this con­ 
clusion is implied by the curves of figure 3. It follows from such a con­ 
clusion that in the intermediate suction zone, the lower the value of n, 
the larger the limited range of transitional E values which depend on 
both soil and meteorological factors. This might suggest that the E(L) 
estimation procedure under consideration is least precise with soils of 
low n values. Even in these cases, however, the procedure was found 
sufficiently accurate for most practical purposes. Note also that the
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appreciably sloping parts of the soil and meteorological curves shift 
towards the intermediate suction region as the limiting E values decrease. 
Hence, the relative importance of the transitional E range increases as 
the magnitude of the limiting E decreases. But for these small values of 
E, the absolute importance of any imprecision of E in the intermediate 
suction range is insignificant.

To test in a preliminary way the applicability of the E(L) estimation 
procedure considered above, its results were compared with actual field 
observations. The field data were obtained from two large bare-soil 
evaporation tanks located at Buckeye, Ariz., and described by van 
Hylckama (1966). The local soil contained in these tanks had a slightly 
salt-cemented upper layer (layer 2 discussed above in the layered-soil 
case) that appeared to be somewhat thicker than 10 cm.

The tanks were provided with apparatus for automatically maintaining 
a preselected water-table depth and for recording the quantity of water 
required to do this. Consequently, data on the actual daily rate of evapora­ 
tion for a selected depth to water table was readily obtained.

Meteorological data, which included air temperatures, air relative 
humidities, and wind velocities, were also collected hourly at the site. 
These variables, converted to a daily-average basis, along with tabular 
radiation data appropriate to the site (List, 1951), were used to calculate 
Epot by the methods described earlier in this paper. Also, soil temperatures 
at the depths of 5 and 10 cm were recorded.

Data sets of various periods were chosen for analysis, primarily on the 
basis of completeness of both actual E and #pot information and achieve­ 
ment of a steady state. All these sets were selected from March to October 
data of 3 consecutive years.

To provide information needed for calculation of E*, undisturbed soil 
cores were obtained from the evaporation tanks at depths of 0-10 cm and 
50-60 cm. The cores, 3 cm thick and 5 cm in diameter, were taken in 
successive, spaced pairs from each depth zone with a soil sampler pro­ 
vided with retainer rings. Using the local ground water of the area, 
saturated hydraulic conductivities and moisture-retention curves were 
determined on cores selected from the two layers. Each moisture-retention 
curve was determined in two parts. A ceramic plate with a hanging water 
column was utilized for the 0 to 0.1 bar suction range, whereas a pressure- 
plate apparatus (Richards, 1954, method 32) was used for suctions 
between 0.1 and 1.0 bar. The moisture-retention curves for the two soil 
zones were used to compute the appropriate n and Sip parameters by the 
methods described earlier in this report. These parameters were then used, 
along with the Ks&t data, to calculate #  by the procedure outlined in the 
section of this paper concerned with layered soil.

A comparison of the observed evaporation rates with calculated EM 
and J£pot is illustrated in figure 10. The circles on the plot indicate average
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FIGURE 10. Influence of water-table depth on actual and estimated rates of 
evaporation from the Buckeye tanks. Computed soil-limited evaporation 
levels are indicated by the solid lines. The soils involved are two layered, with 
the upper layer thickness, Lz centimeters. Each circle and each bar connected 
with it represent, respectively, an observed mean evaporation rate and the 
corresponding calculated mean potential evaporation.

observed evaporation rates for three depths to water table. Owing to the 
insufficiency of the available data, these averages do not carry the same 
weight. The circles, indicating the 120-, 146-, and 156-cm depths, repre­ 
sent the averages from 55,13, and 6 days, respectively. The bars connected 
in figure 10 to the appropriate circles by dotted lines represent the average 
Epot values calculated from the meteorological data obtained for identical 
time periods. Also plotted in figure 10 are two EM curves calculated, as 
mentioned above, for a layered soil. The upper and lower EM curves 
correspond, respectively, to assumed 10- and 15-cm depths of the cemented, 
upper soil layers.

Figure 10 shows that under the conditions studied, evaporation was 
soil limited. Also, this figure demonstrates that the observed values 
correlate reasonably well with those predicted by the layered-soil esti-
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mating technique. Since layered soils are quite prevalent in the field, the 
method's suitability for handling such situations is an attractive feature.

In spite of these encouraging results it must be stressed that owing to 
the various premises involved in the derivation of the theoretical meteoro­ 
logical and soil relations of this study, the procedure suggested here is 
subject to obvious limitations.

Steady-state conditions were assumed throughout this paper. In nature, 
however, the systems considered are seldom in such a state, principally 
because of the variations in meteorological conditions, in soil salt content, 
and in water-table depth.

Owing to the periodicity of the meteorological and water-table changes 
it might be hoped that use of daily averages for the input data will 
decrease the errors inherent in a steady-state model applied to transient 
situations. Gardner and Hillel (1962) suggested that the circadian 
variation in evaporation rate is effectively damped in the upper few 
centimeters and that the overall evaporation rate is subject to little error. 
It is doubtful, however, that such errors are diminished to negligible 
proportions.

The changes in soil salt content and water-table depth are relatively 
slow, and therefore their short-period effects might be negligible. Their 
long-range influences, however, could be of very considerable importance 
and should be taken into account, perhaps by assuming a series of steady 
states, with different experimentally determined soil parameters and 
measured or predicted water-table depths. The effects of salts accumu­ 
lating and often precipitating in the surface layers might be particularly 
significant, especially when leaching rains are infrequent and ground- 
water solute content is relatively high.

Under various conditions, the thermal transfer of water might signifi­ 
cantly change the evaporation rate. In this study, such a transfer was 
taken into account only in the last case treated (that is, the case affected 
by vapor flowing within the upper, relatively dry soil layer). Thus, the 
thermal transfer of liquid water was entirely neglected. This approxi­ 
mation seems to be justified because (1) in moist soils such a transfer 
usually is negligible in comparison with the coexisting liquid flow due to 
pressure gradients and (2) in dry soils such a transfer is usually insignifi­ 
cant in comparison with the coexisting thermal flow of vapor. (See Philip 
(1957a) and de Vries (1958) for some typical relative magnitudes of the 
relevant transfer coefficients.)

The analysis of the vapor-affected case presented in this study attempts 
to treat the most important of the thermal influences taken into account 
by the Philip-de Vries theory. It must be stressed, however, that the 
simple analysis under consideration is based on several assumptions, 
which are extraneous to the above theory and which can be only approxi­ 
mately valid. These assumptions may influence the vapor-effect correction,
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though it is very doubtful that they could change it sufficiently to be of 
practical significance.

Some of the temperature effects which all the suggested procedures do 
take into account involve soil surface temperature, Tu. In practice, 
inaccuracies will exist in data needed to compute the effects of Tu (espe­ 
cially those involved in determining Qv), and thus the approach used 
may be imprecise. Also, if a zero value is assumed for Qg, as was done in 
this study, the surface temperature, Tu, may be overestimated or under­ 
estimated. Information on the thermal conductivity of the soil and soil 
temperature at a shallow depth could make it possible to account for a 
nonzero Qg , but this would necessitate the gathering of additional data 
with possibly negligible improvement of the overall estimate.

The soil data employed also might be less precise than desirable. This 
could be at least partly due to the inapplicability of the empirical equation 
10 or to the inaccuracy of the methods suggested for deriving hydraulic- 
conductivity information from the soil-water retention curve. In addition, 
it might be impossible to take into account adequately the variability 
of field soils.

Finally, inherent in the method are all the limitations of the basic 
meteorological and soil equations (equations 3, 4, 9, 10, Darcy's law, and 
the Philip-de Vries theory).

With the surface-temperature equation 9 included in the computation 
scheme, the procedure described in this paper might be called quadri- 
combinational, because it is an algorithm which combines a soil equation 
of water flow and meteorological equations of heat balance, vapor transfer, 
and sensible heat transfer. Alternate forms of some of these equations 
could be employed, and other ways of including them in the algorithm 
could possibly be devised. The relative merits of such variants of the 
proposed approach will have to be determined experimentally.

It follows from the above considerations that the technique described in 
this paper is only approximate and that therefore it should be used with 
appropriate care. It is possible to devise changes in this technique which 
would considerably improve its precision; however, these changes would 
impair the method's relative simplicity and its dependence on generally 
available data. The preliminary experimental results cited above as well 
as theoretical considerations seem to indicate that in spite of its limitations, 
the procedure for evaluating evaporation presented in this paper can 
yield useful approximate estimates. It should be used primarily when 
simplicity is needed and precision of estimates is not crucial.
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FLOW CHARTS
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Flow charts for estimating steady-state evaporation rates from bare soils 

A. The main procedure

Obtain meteorological data: Ta , tia , Va , (Q N) Obtain data on the depths of water table

Obtain undisturbed soil cores from every distinct layer or horizon; see Richards (1954, p. 159)

X
Determine Ks^t and the moisture-retention curve of each core; see p. 10,30 and Richards (1954, p. 109-111)

From every moisture-retention curve, compute K' (S) for a series of S values (always include 
#'(0) =K'au !). Use equation 7 and p. 5-7 of Marshall (1958) with these changes: (1) sub­ 
stitute the constant 2.713 X10 7 for2.8X10~3 and (2) use n~ 4/3 instead of n" 2 . The values 
obtained are not K, but K', proportional to K; see p. 10

1

For each soil layer, plot Iog 10 [(K'^/K')   1] on the ordinate against log,0 S. Draw the best 
straight line through the plotted points. Compute n (~ the line's slope) and Sw (the line's 
intercept with the abscissa =log10 S w )

Plot the Ea (L) curve, utilizing either 
equations 23 and 14 or equation 25; see 
p.9,15-16

Plot the EX (L) curve, utilizing the lay­ 
ered- soil procedure. Start with equa­ 
tion 34; follow with equations similar to 
equation 32; end with equation 30; see 
p. 21,22

T

Compute the value (s) of Efot from meteorological data, using equation 9 and equation 5 (with 
AK = 1.0). Enter horizontal line(s), E=Efot , on the graph already containing the E (L) plot, 
to produce E(L) relation(s), similar to relation(s) of figure 7; see p. 16,17,18,28

Using the data on the actual depth of the water table, iact , read the actual E value from the E(L) graph

Yes

Use equation 9 and equation 5 (with #=the actual E) to compute hu ; see p.4,5,23

Go to the subroutine for 
the vapor-affected case 
(flow chart B)
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B. The subroutine for the vapor-affected case

Obtain data on T,

Using fe=0.8,calculate K (with equations 6 and 10) and Kvtf = (MghD^) /RT; see p.4,6,26-27

For several arbitrary E values (not much different from the actual E, yielded by the 
main procedure), determine the corresponding L u values (using equation 41); plot the 
relation between Lu and E thus obtained; see p.26,27

Plot the E^ (L) curve, yielded by the main procedure (with L=L act   L K , where £act = the 
actual L and £ u =a variable). Also plot the relation between L u and E derived in the 
previous step. The intersection between these two curves determines the value of the 
actual E, adjusted for vapor effects; see p. 27

Redetermine T,
at smaller L* ;

see p. 27

For several arbitrary E values (not much different from the actual E, yielded by the main 
procedure), compute the values of l> J and of the corresponding L u ', using equations 42 and 
43; plot the relation between L u ( = L* +L'U ) and E, based on this computation; see p.27

Plot the EX (L) curve, yielded by the main procedure (with L-=L Kl -L'u - L' .where 
L act = the actual L and L a   L u'-\-L"u = a variable). Also plot the relation between L I( = L'U 
+ L* and E derived in the previous step. The intersection between these two curves de­ 
termines the value of the actual E, adjusted for vapor effects; see p.28








